Code No.: 16147 (D) N/O

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD Accredited by NAAC with A++ Grade

B.E. VI-Semester Main & Backlog Examinations, May/June-2023 Additive Manufacturing and its Applications (OE-IV)

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Q.	No. $Part-A (10 \times 2 = 20 \text{ Marks})$ Stem of the question	T				
1	Classify the additive manufacturing processes according to ASTM 1		M	L	CO	F
2.		F42	2	2	1	
	Dist the commonly used terms of rapid prototyping.					
3.	What do you mean by post-curing?		2	1	1	1
4.	What is the importance of milling process in solid ground curing?		2	1	2	1
5.	What do you mean by de-cubing process in LOM?		2	2	2	1
6.	Why FDM process is so popular for desktop printing?	1 2	2	3	3	1
7.	Why SLS powders are coated with low-melting materials?	2		3	3	1
8.	List four characteristics of a good binder material.	2		2	4	1
9.	Why is AM popular within the healthcare industry?	2		1	4	1
10.	What are the typical AM applications in design?	2	2	?	5	1
	Part-B $(5 \times 8 = 40 \text{ Marks})$	2	1		5 1	
1. a)	List the stens involution					
	entire process chain is, in your opinion, (i) the shortest? (ii) Most tedious?	5	2	1	1	
b)	Classify prototypes and explain the details.					
a)	Compare and contract the	3	3	1	5	
	solid ground curing systems. What are the advantages and disadvantages for each of the systems?	5	1	2	2	
b)	How do you generate mask in SGC process? Explain its applications.					
		3	2	2	1	18

40%

40%

	Cformance	5	3	3	2
3. a) Sta	te and explain the critical factors that will influence the performance diffunction of the following processes:				
(:)	I OM (ii) FDM	3	2	3	1
b) W	hat are the advantages and disadvantages of solid-based systems?	3			
	ompared with requirements of the laser-based SLS process and the three- imensional printing systems. What are the advantages and disadvantages	4	2	4	2
d	imensional printing systems?	4	2	4	2
b) I	Explain how Z-Corp.'s 3D colour printer manufactures multi-colored parts. How do colourized prototypes add value to the AM part? Explain	4	2		
1	with a case study.	4	3	5	1
15. a)	Explain why and how AM is used in Coin making process?	. 4	3	5	2
b)	Describe how AM models can be used for pre-surgical operation planning Use appropriate examples to illustrate your answer.		3	1	1
16. a)	STL files are problematic. Is this a fair statement to make? Discuss.	4			-
	Compare the applications of SLA and SGC processes.	4	3	2	
b)					
17.	Answer any two of the following:	s. 2	1 2	2 3	3 2
a)	State and explain any one of the aerospace case studies of FDM process	ser '	4	3	4
b)	Explain why support structures are not needed in the Selective Las Sintering process.				
			4	3	5
c	How AM technology is helpful in GIS applications? M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: 20%	Program	nme O	utcome	2

Blooms Taxonomy Level - 3 & 4

Blooms Taxonomy Level - 1

Blooms Taxonomy Level – 2

i) ii)

iii)